Solving Critical Path Problem in Project Network by a New Enhanced Multi-objective Optimization of Simple Ratio Analysis Approach with Interval Type-2 Fuzzy Sets
نویسندگان
چکیده مقاله:
Decision making is an important issue in business and project management that assists finding the optimal alternative from a number of feasible alternatives. Decision making requires adequate consideration of uncertainty in projects. In this paper, in order to address uncertainty of project environments, interval type-2 fuzzy sets (IT2FSs) are used. In other words, the rating of each alternative and weight of each criterion are expressed by IT2FSs. Moreover, for obtaining weights of criteria, interval type-2 fuzzy analytic hierarchy process (AHP) method is employed. In addition, a new enhanced model of multi-objective optimization on the basis of simple ratio analysis (MOOSRA) method is developed with IT2F-relative preference relation. Finally, to illustrate applicability of the introduced approach, an existing application from literature is adopted and solved.
منابع مشابه
solution of security constrained unit commitment problem by a new multi-objective optimization method
چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...
A NEW MULTI-OBJECTIVE OPTIMIZATION APPROACH FOR SUSTAINABLE PROJECT PORTFOLIO SELECTION: A REALWORLD APPLICATION UNDER INTERVAL-VALUED FUZZY ENVIRONMENT
Organizations need to evaluate project proposals and select the ones that are the most effective in reaching the strategic goals by considering sustainability issue. In order to enhance the effectiveness and the efficiency of project oriented organizations, in this paper a new multi-objective decision making (MODM) approach of sustainable project portfolio selection is proposed which applies in...
متن کاملA new approach for solving fuzzy multi-objective quadratic programming of water resource allocation problem
متن کامل
A New Objective Weight on Interval Type-2 Fuzzy Sets
The design of weight is one of the important parts in fuzzy decision making, as it would have a deep effect on the evaluation results. Entropy is one of the weight measure based on objective evaluation. Non--probabilistic-type entropy measures for fuzzy set and interval type-2 fuzzy sets (IT2FS) have been developed and applied to weight measure. Since the entropy for (IT2FS) for decision making...
متن کاملA new solving approach for fuzzy multi-objective programming problem in uncertainty conditions by using semi-infinite linear programing
In practice, there are many problems which decision parameters are fuzzy numbers, and some kind of this problems are formulated as either possibilitic programming or multi-objective programming methods. In this paper, we consider a multi-objective programming problem with fuzzy data in constraints and introduce a new approach for solving these problems base on a combination of the multi-objecti...
متن کاملFuzzy Critical Path Problem for Project Network
The task of finding the crisp critical path has received researcher’s attention over the past two decades which has wide range of applications in planning and scheduling the large projects. In most cases of our life, the data obtained for decision makers are only approximate, which gives rise to fuzzy critical path problem. In this paper, new ranking methods are introduced to identify the fuzzy...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 30 شماره 9
صفحات 1352- 1361
تاریخ انتشار 2017-09-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023